NORMAN DISNEY & YOUNG

Consulting Engineers

The Sustainable Laboratory Building Challenges from a current project

Labs 21 Conference Denver Colorado 22-24 October 2003 Patrick Fogarty Director

The Burlington Danes Project

- The Project
- How the Building Works Flexibility and Modularity
- Initial Environmental Measures Concept Design
- What Next? The Hard Yards Detail Design and beyond
- The Project today

Imperial College London

The Design Team

Services Engineers

Architects

Structural Engineers

Adams Kara Taylor

Cost Planners

The Project

- Circa 20,000 m²
- Flexible Laboratory Space including
 - Cat 2 & 3 Biological Research Laboratory
 - Associated write-up & support areas
 - Research Medical Imaging Facility
 - Biological Services Unit
- Multiple Tenants
 - Major Educational Research Facility
 - Global Pharmaceutical Company
 - Key Charitable Research Organisation
- Connection and Relationship to Primary Teaching Hospital

The Project Flexibility & Modularity Concept Design Detail Design Project Today

The Project Flexibility & Modularity Concept Design Detail Design Project Today

The Project Flexibility & Modularity Concept Design Detail Design Project Today

The Project Flexibility & Modularity Concept Design Detail Design Project Today

Flexibility & Modularity – the drivers

- Provide space suitable for a range of functions
- Minimise disruption to Co-Tenants
- Provide open plan flexible space
- Minimise future requirements for reconfiguration of space

Flexibility & Modularity – our solution

- □ The Laboratory is designed around a series of repetitive modules
- Modules are stacked both horizontally and vertically (shoe boxes)
- Modules are serviced from outside the laboratory space
- Modules are designed for multiple configurations with minimum modification to Services

3.3 m 9.9 m

6.6 m

15 m

Bench Pitch

Structural Grid

Lab Module

SHELL AND CORE

GENERIC FITOUT OPEN PLAN NO CEILING

GENERIC FITOUT OPEN PLAN CEILING

SPECIFIC FITOUT

HIGH LOAD AREA

CAT 3 LABORATORY

Modularity in Construction

Concept Design - Saving Energy

- Energy Minimisation Measures
- Energy Recovery Measures
- Alternative Energy Sources
- Operational Energy Savings
- □ Life Cycle / Embedded Energy Minimisation

Energy - Who are the culprits?

- Focus efforts on the big Energy Users
- Focus initially on Primary Energy Users
- Design time is expensive time use it well
- Identify Future targets but keep focused

Energy Savings – Initial Assessment

System Arrangement

System Arrangement

Key Measures – Energy recovery

Key Measures – Variable Volume

Key Measures – Lab Conditions

Key Measures – Active Facade

Winter

Key Measures – Active Facade

Summer

Key Measures – Natural Ventilation

Other Opportunities

4,700,000 KWh

411 Tonnes Carbon

£ 140,000 per year

Detail Design - Fine Tuning

- Design Equipment for how the building is expected to operate
- Don't over design
- Design the systems to 'sit' comfortably on the expected operating point
- Choose equipment for Operational Efficiency at this point
- Consider Maximum Expected Duty as a check

Fine Tuning building design

- Why aren't buildings designed the same way?
- How we are doing it :
 - Model the lab modules to determine the most probable operating range for primary systems on an individual module basis
 - Model the combination of lab modules to determine most likely system duty
 - Model the building systems and test the sensitivity of the system demands to various system configurations
 - Add detail information as the design progresses
 - Don't 'chase' floor plans

Laboratory Loads per module

Laboratory Loads - combined

Most Likely Loads

- But what is really happening at the point we have identified as the maximum duty?
- Duty for all modules really varies up to the maximum duty
- Calculating the most likely load is a game of chance
- To analyse chance we need to use statistical / probability methods

Implementation

- What does this mean in Practice ?
- Plant should be selected based on most probable duty
- Plant should be selected for maximum efficiency at this point
- Check high and low end operation
 - will the Mini do 90 mph (150 kph) at a squeeze?
- Method can be applied to all variable duty systems

A Practical Example

A Practical Example

Operational Issues

- Relaxation of condition requirements where appropriate
- Group tight tolerance equipment
- Group high load equipment
- Recirculating Vs. Pass through hazard cabinets
- Operational Education

The Project today

- New Drivers deliver maximum science for our buck
- Value Engineering to drive cost efficiencies
- BUT don't throw the baby out with the bath water
- □ The challenge is to retain key elements & provide value for money

